Koordinations-Komplexe Lewis-basischer Dialkylaluminiumalkoxide mit Trialkylaluminium

Reinhard Benn, Edo Janssen, Herbert Lehmkuhl und Anna Rufińska

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr (Bundesrepublik Deutschland)

(Eingegangen den 23. März 1987)

Abstract

The organoaluminium complexes $[R_2AlO(CH_2)_3Y]_2$ and $[R_2AlO(CH_2)_2Y]_2$ (Y = OR', NR₂') react with $[R_3Al]_2$ to yield the new compounds $R_2Al \leftarrow \overline{Y(CH_2)_mOAlR_3}$ (m = 2,3). The α -oxygen atom, which serves as bridge in the dimers, functions as n-donor in the 1:1 adducts with trialkylaluminium. The solution structure and the fluxional behaviour of these new complexes was elucidated by ¹H, ¹³C, and ²⁷Al NMR spectroscopy.

Zusammenfassung

Die Organoaluminium-Komplexe $[R_2AIO(CH_2)_3Y]_2$ und $[R_2AIO(CH_2)_2Y]_2$ (Y = OR', NR₂') reagieren mit $[R_3AI]_2$ zu Komplexen $R_2AI \leftarrow Y(CH_2)_mOAIR_3$ (*m* = 2,3). Das überbrückende α -Sauerstoffatom in den Dimeren fungiert bei den neugebildeten Komplexen als n-Donor. Die Struktur in Lösung und das dynamische Verhalten der neuen Komplexe wurden mittels ¹H-, ¹³C- und ²⁷Al-NMR-Spektroskopie ermittelt.

Einleitung

Dialkylalkoxyaluminium-Einheiten $R_2 AlOR^1$ assoziieren zur elektronischen und koordinativen Absättigung des Aluminiums über μ -Sauerstoffbrücken zu Di- und Trimeren [1-4]. Besitzt der Rest R^1 eine weitere Donorfunktion über eine Lewisbasische Gruppe, z.B. $R^1 = (CH_2)_m Y$; Y = OR', NR_2' , so ergeben sich zusätzliche oder alternative Koordinationsmöglichkeiten. Selten beobachtet man die Bildung monomerer Chelatkomplexe A wie beim Dialkylaluminiumacetylacetonat [5]. Wesentlich häufiger bleibt die Assoziation erhalten (Typ B). Bei geeigneter Länge der Alkylenkette (m = 2) und Lewisbasizität des Donoratoms in Y erfolgt zusätzlich intramolekulare Koordinierung über den Rest Y an das Aluminiumatom unter Bildung des Strukturtyps C mit fünffach-koordiniertem Aluminium [6-9].

Die Kristallstruktur einer Verbindung des Typs C (m = 2; R = Me; Y = OMe) [6] zeigt mit drei unterschiedlichen Bindungsabständen jedes Aluminiumatoms zu den drei Lewis-basischen Sauerstoffatomen auch verschiedene Bindungsstärken an. Die schwächste Bindung ist diejenige zur OCH₃-Gruppe. Bei ähnlichen Verbindungen mit um eine CH₂-Gruppe verlängerter Alkylenkette (m = 3) ist aufgrund der Lösungs-NMR-Spektren eine bindende Wechselwirkung zwischen OCH₃-Gruppe und Aluminiumatom nicht mehr zu erwarten [6,8]. Wir interessierten uns jetzt für die Reaktivität der unterschiedlich basischen Sauerstoffatome gegenüber Trialkylaluminium als Lewissäure und berichten hier über Struktur und dynamisches Verhalten der aus **B** bzw. C und Triethylaluminium gebildeten Komplexe in Lösung.

Ergebnisse und Diskussion

Komplexe vom Typ $[R_2AlO(CH_2)_mY]_2$ (m = 2,3)

Die Struktur gelöster Komplexe vom Typ $[R_2AlO(CH_2)_mY]_2$ (m = 2,3; Y = OR', NR₂'; R,R' = Me,Et) wurde mit Hilfe der ¹H-, ¹³C- und ²⁷Al-NMR-Spektroskopie ermittelt. Bei den Komplexen mit dreigliedriger Alkylenkette (m = 3) 1 und 2 findet $[R_3Al]_2 + 2HO(CH_2)_mY \xrightarrow{-2RH} [R_2AlO(CH_2)_mY]_2$

man $\delta(^{27}\text{Al})$ bei 150 und 152 ppm [6,8]. Aufgrund des Zusammenhangs zwischen $\delta(^{27}\text{Al})$ und der Koordinationszahl des Aluminiums in Organoaluminium-Verbin-

dungen [6-8] spricht dies für eine Vierfach-Koordination der Aluminiumatome in 1 und 2. Bei 3-6 sind dagegen die beiden Lewis-basischen Zentren durch nur zwei Methylengruppen (m = 2) voneinander getrennt. Die ²⁷Al-NMR-Verschiebungen liegen um 120 ppm [6-8], was für Organoaluminium-Verbindungen mit fünffachkoordinierten Aluminiumatomen typisch ist. Auch aus den ¹H-NMR-Spektren lässt sich bei den Verbindungen 4-6 die Fünffach-Koordination der Aluminiumatome ableiten. Infolge intramolekularer Chelatbildung des δ -ständigen Restes Y an Aluminium sind die Protonen am C_a-Atom der beiden äquivalenten Ethylgruppen diastereotop. Tatsächlich lässt sich in den Tieftemperaturspektren von 6 bei 9.4 T eine Diastereotopie-Aufspaltung beobachten (s. Tabelle 1). In 4 und 5 sind zwischen 213 und 300 K diese Protonen infolge Dissoziation der Al-Y-Donorbindung enantiotop. Da sich jedoch in diesem Temperaturbereich die δ (²⁷Al)-Werte von 3-6 auch nicht andeutungsweise in Richtung auf Werte bewegen, die für vierfach-koordinierte Aluminiumatome charakteristisch sind, ist anzunehmen, dass die im Dissoziationsgleichgewicht vorhandene Konzentration an Verbindungen mit vierfachkoordiniertem Aluminium äusserst gering ist [7]. In Übereinstimmung mit dieser Interpretation sind auch die Kern-Overhauser-Differenzspektren [10] von 3, 5 und 6 (vgl. Tabelle 1). Insbesondere werden starke Effekte zwischen den Protonen der an Aluminium gebundenen Ethylgruppen mit den im Lewis-basischen Y-Rest gebundenen Protonen beobachtet: Dies ist ein direkter Hinweis für die räumliche

Fig. 1. 400.13 MHz ¹H-NMR-Spektren von 6 bei T 300 K. (a) normales Spektrum und (b)-(e) Kern-Overhauser-Differenzspektren. Die Signale der gesättigten Protonen sind durch einen Pfeil markiert. Die Protonen, die zu diesen räumlich benachbart sind, erscheinen in den Differenzspektren als positive Signale und sind gekennzeichnet. So geht aus Spektrum (b) die Nachbarschaft von H(3) mit H(4), H(5), H(2) und H(1), aus (c) die von H(5) mit H(4), H(6) und H(1), aus (d) die von H(6) mit H(5), H(4) und H(1) und aus (e) die von H(1) mit H(3), H(5), H(2) und H(6) hervor.

/erbindung	δ(H _i) (ppr	u)						NOE
	1	2	3	4	5	6	7	von H, auf H $_{j}$ bei T 300 K
(Et ₂ AlO(CH ₂) ₃ OEt)] ₂ (1)	0.17	1.37	3.64	1.52	3.07	3.23	1.02	
(Et ₂ A <u>lO(CH₂)</u> 3NEt ₂] ₂ (2)	0.33	1.45	4.01	1.85	2.12	2.27	0.92	
(Me ₂ ÅlO(CH ₂) ₂ ÒMe)] ₂ (3) ^a	-0.77	I	3.41	2.91	I	2.57	ı	$1 \rightarrow 3,6; \ 3 \rightarrow 1,4$
(Et.AlO(CH.), OMe)], (4)	0.09	141	ንደ የ	7 64		7 05		$6 \rightarrow 1$; $4 \rightarrow 1$, 3
$(Et_2 Alo(CH_2)_2 OEI)_1$ (5)	-0.40	1.25	3.41	2.81	1	3.20	- 0.93	3 → 1 3.6: 3 → 1 2 4
								$4 \rightarrow 2,3,6,7; 1 \rightarrow 2,6$
(Bt.AIO/CH_)_NEt_)]_ (6)	0.09	1 57	3 40	χυί		2.52	0	• • •
	44.0	70.7		00.4	1	00.2	70'N	$1 \rightarrow 2,0; 2 \rightarrow 1,3;$
								4 → 3,6; 6 → 3,4,1,2,7 7 → 6,1,2,4
Bei T 300 K. Zur Nummerierun	g der Protonen	(Kohlenstoff	atome) vgl.:		- ۲			
					Г (СН ₂)			Ç
				2 1	(i	u	
				снасна	~ ^ \	۲ ۲	L	a
					₹ 	/		
				ជ	o	ŭ	CH ₃ CH	Н С
					CH2 3		2	CH3 XCH3CH3
					- CH2			V
					сн _э 5			
					;			Y = OR', NR'2)
					×			
					сн ₂ б			
					CH ₃ 7			

Tabelle 1 400.13 MHz ¹H-NMR-Daten von 1-6 in Toluol- d_8 bei T 213 K

172

Verbindung	δ(C _i) (p	pm) (¹ J(C,	H) (Hz))				
	1	2	3	4	5	6	7
$[Et_2AlO(CH_2)_1OEt]_2$ (1)	-0.2	9.8	60.7	32.3	67.0	66.2	14.6
	(111)	(124)	(144)	(126)	(141)	(141)	(126)
$[Et_2AlO(CH_2)_3NEt_2]_2$ (2) ^a	-0.2	9.8	64.4	30.4	48.8	46.4	11.8
	(111)	(125)	(145)	(126)	(131)	(132)	(126)
$[Me_1AlO(CH_2)_2OMe]_2$ (3) ^b	-11.1	-	58.6	71.2	-	57.4	_
	(113)		(144)	(144)		(144)	
$[Et_2 AlO(CH_2)_2 OMe]_2$ (4)	-0.2	10.8	59.0	71.0	-	57.6	-
	(110)	(123)	(144)	(144)		(143)	
$[Et_2 AlO(CH_2)_2 OEt]_2$ (5)	0.4	10.6	59.7	68.2		66.1	14.1
	(111)	(123)	(145)	(145)		(143)	(126)
$[Et_2AlO(CH_2)_2NEt_2]_2$ (6)	1.6	11.8	56.3	52.1	_	42.1	7.5
	(108)	(123)	(143)	(134)		(137)	(126)

Tabelle 2 100.6 MHz ¹³C-NMR-Daten von 1-6 in Toluol- d_8 bei T 213 K

Die Zuordnung der ¹³C-Signale erfolgte mit Hilfe zweidimensionaler ¹H, ¹³C-Spektren. ^aT 223 K. ^bT 310 K. Zur Nummerierung der C-Atome vgl. Tabelle 1.

Nachbarschaft dieser Gruppen, die aus der Rückkoordination der Gruppe Y an Aluminium resultiert.

Aus den ¹³C-NMR-Spektren lässt sich ebenfalls ableiten, dass 1 und 2 (m = 3) andere Strukturen als 3-6 (m = 2) haben. So sind die ¹J(C,H)-Kopplungskonstanten der dem Lewis-basichen Zentrum in Y benachbarten C-Atome um ca. 3 Hz erhöht, wenn der O(CH₂)_nY-Rest als intramolekularer Chelatligand fungiert, vgl. Tabelle 2.

Die grössten spektralen Änderungen in den ¹H- und ¹³C-NMR-Spektren beobachtet man bei 6. Dies deutet darauf hin, dass innerhalb der Reihe 3-6 bei 6 die stabilsten Donor-Akzeptorbindungen zwischen Al und dem Rest Y gebildet werden.

Struktur und Dynamik von $R_2 \overline{Al} \leftarrow Y(CH_2)_m OAlR'_3$ -Komplexen

Aus IR- und ¹H-NMR-Untersuchungen und kryoskopischen Molmasse-Bestim-

mungen an 1/1 Mischungen der dimeren Verbindungen $[Me_2AlOCH_2CH_2NMe_2]_2$ und $[Me_3Al]_2$ bzw. $[Et_2AlOCH_2CH_2NH_2]_2$ und $[Et_3Al]_2$ haben Sato et al. [11] auf Komplexbildung zwischen beiden Komponenten über die Lewis-basischen Stickstoffatome geschlossen. Die Werte der gefundenen Molmassen waren konzentrationsabhängig und lagen zwischen den für monomere bzw. dimere Komplexe berechneten. Dementsprechend formulierten sie ein Gleichgewicht ($D \rightleftharpoons E$), wobei in verdünnter Lösung das Monomere D überwiegen sollte. Nach Hoffmann [2] ist die kryoskopisch bestimmte Molmasse der Komplexverbindung von 5 und Triethylaluminium ebenfalls konzentrationsabhängig. Die Werte entsprechen Assoziationsgraden von 1.07 bis 1.24.

D entsprechende monomere Komplexe sollten zwei unterschiedliche Aluminiumatome der Koordinationszahlen 3 und 4 enthalten, die mit der ²⁷Al-NMR-Sonde ohne grossen Aufwand identifiziert werden könnten. Dazu haben wir eine Serie von Komplexen aus den dimeren Verbindungen 1-6 und dimerem Trialkylaluminium dargestellt:

$\left[R_2 AlO(CH_2)_m Y \right]_2$	R
(1-6)	 2 AI (CH ₂) _m
+ $\left[R'_{3}Al \right]_{2}$	
	ALR'3

(7	-	1	2)
---	---	---	---	---	---

Nr.	m	R	R'	Y	Assoziations- grad ^a	
7	2	Ме	Ме	OMe	1.6 ^b	
8	2	Et	Et	OMe	1.05	
9	2	Et	Et	OEt	1.1 ^c	
10	2	Et	Et	NEt ₂	1.3	
11	3	Et	Et	OEt	1.3	
12	3	Et	Et	NEt ₂	1.45	

^a Kryoskopisch in Benzol. ^b Laut Lit. [11] für Y = NMe₂: 1.4-1.7. ^c Laut Lit. [2]: 1.07-1.24 (konzentrationsabhängig).

Nach kryoskopischen Molmasse-Bestimmungen sind die Komplexe 8-12 überwiegend monomer gelöst. In den ²⁷Al-NMR-Spektren werden nur Resonanzsignale im Verschiebungsbereich um 165 ppm gefunden [12], der für vierfachkoordinierte Aluminiumatome in Verbindungen des Types $[R_2AIOR^1]_2$ oder $[R_3Al-$ · Donor] charakteristisch ist [8]. Im Temperaturbereich zwischen 253 und 353 K bleiben die $\delta(^{27}Al)$ -Werte von 7-12 praktisch unverändert, sodass hieraus keine Hinweise auf die Existenz von Spezies D mit dreifach-koordiniertem Aluminium abgeleitet werden können. Demnach können für 7-12 Strukturen des Typs $R_2AIO(CH_2)_mY \rightarrow AIR'_3$ [2,4,11] ausgeschlossen werden. In den 400 MHz ¹H-NMR-Spektren wird bei 8-12 eine Diastereotopieaufspaltung der Methylenprotonen beider äquivalenter, an Aluminium gebundener Ethylgruppen beobachtet. Im Fall von 12 (Y = NEt₂) sind auch die Methylenprotonen der Aminogruppen inäquivalent (im Gegensatz zu Et₂N(CH₂)₂OH, wo bei 213 K die Methylenprotonen der Ethylgruppe isochron erscheinen). Wie schon für Verbindung 6 (Y = NEt₂)

Tabelle 3

Verbindung	δ(²⁷ Al) (ppm)	<i>W</i> _{1/2} (Hz)	
$Me_2 AIO(Me)(CH_2)_2 OAIMe_3 (7)$	169	5000	
$Et_2 AlO(Me)(CH_2)_2 OAlEt_3 (8)$	171	7800	
$Et_2 AlO(Et)(CH_2)_2 OAlEt_3 (9)$	166	7900	
$Et_2AIN(Et)_2(CH_2)_2OAIEt_3$ (10)	167	6000	
Et ₂ AlO(Et)(CH ₂) ₃ OAlEt ₃ (11)	164	8400	
$Et_2AIN(Et)_2(CH_2)_3OAIEt_3$ (12)	161	6500	

104.2 MHz ²⁷Al-NMR-Daten von 7-12 gelöst in Toluol- d_8 (ca. 30%ig) bei T 310 K. Standard: externes Aluminiumtrisacetylacetonat

lässt sich auch bei 12 die Diastereotopieaufspaltung bereits bei 300 K beobachten, während für 8–11 diese Aufspaltung erst ab 213 K deutlich wird. Offensichtlich ist auch in der Reihe 7–12 die Al-Y-Bindung für $Y = NEt_2$ am stabilsten.

Über den räumlichen Aufbau der Komplexe 7–12 geben ihre Kern-Overhauser-Differenzspektren Auskunft. So werden in allen Fällen für 7–12 NOE-Effekte zwischen den O-CH₂-Protonen an C(3) und den Protonen der AlR₃-Einheit gefunden, vgl. Tabelle 4. Dies ist ein Hinweis dafür, dass die Komplexierung der Lewis-Säure R₃Al am ersten Lewis-basischen Zentrum O-(CH₂)₂ und nicht am

(Fortsetzung s. S. 178)

Fig. 2. 400.13 MHz ¹H-NMR-Spektren von $[Et_2Ai \leftarrow O(Et)(CH_2)_3OAlEt_3]$ (11), gelöst in Toluol- d_8 bei *T* 213 K. (a) normales Spektrum, (b)-(d) Kern-Overhauser bzw. Magnetisierungstransferspektren. Die gesättigten Signale sind durch einen Pfeil markiert. In den Differenzspektren erscheinen diejenigen Signale der Protonen, die mit denen der gesättigten Resonanzen sich in räumlicher Nachbarschaft (in chemischem Austausch) befinden als positive (negative) Signale.

		48 DCI 1	4 C17								
Verbindung	8(H,)									NOE von H, auf H _j bei	
	1	2	3	4	5	6	7	10	11	T 213 K	
Me ₂ AlO(Me)(CH ₂) ₂ OAIMe ₃ (7)	-0.53	1	3.28	2.41	1	2.34	I	-0.36	1	$1 \rightarrow 6; 3 \rightarrow 4,10$	
	0.05									$4 \rightarrow 3$; $10 \rightarrow 3$ Austausch von 1 und 10	
Et 2 ^{ÁIO(Me)} (CH ₂)2 ^O AIEt ₃ (8)	c0.0	1.15	3.30	3.26	I	2.35	I	0.29	1.55	2 → 1,6; 3 → 10,11,4 6 → 2; 10 → 2,3,11;	
	50.0-									$11 \rightarrow 3,10$ Austausch von 2 mit 11	
Et 2A10(Et)(CH2),20A1Et3 (9)	- 0.12 0.08	0.99	3.40	2.74	I	3.01 2.02	0.81	- 0.03	1.23		
Et_AIN(Et)_2(CH_2)_2OAIEt_3 (10)	0.15	1.28	3.43	1.74	I	1.90	0.28	0.40	1.64	$3 \rightarrow 1,10; 3 \rightarrow 4,6B,10,11$ $6B \rightarrow 1,3; 2 \rightarrow 1,11.$ Austauch von 2 mit 11	
Et 2 <mark>AlO(Et)(CH2) 3</mark> OAIEt 3 (11) ^a	0.04 0.18	1.19	3.64	1.13	2.57	2.92	0.53	0.39	1.62	bei T 300 K 3 → 10,11,4; 6 → 5,1B,2,7	
Et 2 <mark>ÁIN(Et 2)(CH 2) 3</mark> ÓAIEt 3 (12) ⁶	0.05 0.25	1.36	3.70	1.01	1.72	2.05	0.30	0.36	1.62	Austausch von 2 mit 11 $1 \rightarrow 6,2; 3 \rightarrow 4,5,10,11;$ $5 \rightarrow 3,4,6,7; 6 \rightarrow 7,1,5$	
										Austausch von 2 mit 11 und 1 mit 10 bei T 300 K	
^a Bei T 233 K. ^b Bei T 193 K. Zur N	Jummerierun	g der Prot	onen (Kol	lenstoffat	ome) vgl.:						
	7 б СН ₃ СН		AI(C	0 11 CH ₂ CH ₃) ₃	CH ₃	° CH2X	• • •	10 11 I (CH ₂ CH ₃) ₃			
			н ₂ СН ₃ 2) CE	CH2CH3				

(X = 0, NR')

Tabelle 4

176

Verbindung	δ(C _i) (ppn	n) (¹ J(C,H) (H	z))							
		7	3	4	5	6	1	10	11	
Me ₂ AlO(Me)(CH ₂) ₂ OAlMe ₃ (7)	- 10.7		59.1	72.9		58.2		- 7.5		
	(114)	ı	(149)	(121)	I	(149)	I	(110)	١	
$Et_2 AlO(Me)(CH_2)_2 OAlEt_3 (8)$	-1.2	0.6	59.8	73.2	I	58.4	I	0.3	11.0	
	(113)	(125)	(149)	(121)	ı	(148)	I	(110)	(123)	
Et, AlO(Et)(CH ₂), OAIEt, (9)	- 0.3	8.9	60.2	1.17	1	70.0	13.6	0.3	10.9	
	(111)	(124)	(150)	(142)	I	(149)	(128)	(111)	(123)	
Et, AIN(Et), (CH,), OAIEt, (10)	- 0.4	9.9	58.8	51.3	I	42.5	7.2	0.4	11.3	
	(111)	(125)	(148)	(141)	1	(139)	(127)	(109)	(123)	
Et 2 AlO(Et)(CH2), OAIEt 3 (11)	0.1	9.2	63.2	29.8	72.4	9.69	14.9	0.6	11.1	
	(112)	(125)	(146)	(127)	(149)	(148)	(128)	(110)	(123)	
Et, AIN(Et), (CH,), OAIEt, (12) ^a	-1.1	9.4	64.0	25.3	52.2	43.9	6.5	1.8	11.2	
	(113)	(125)	(145)	(127)	(139)	(139)	(127)	(110)	(123)	
^a Bei T 223 K. Zur Nummerierung der	r C-Atome vgl.	Tabelle 4. Zu	rordnung der	¹³ C-Signale ü	ıber zweidime	nsionale ¹ H, ¹	13 C-Spektrosk	opie.		1

100.6 MHz 13 C-NMR-Daten von 7–12 in Toluol- d_8 bei T 213 K

Tabelle 5

177

* 1741 ALC: 1011 AUG

zweiten Zentrum Y erfolgt [12]. In Übereinstimmung damit findet man ferner NOE-Effekte, die die räumliche Nähe der Protonen der Gruppe Y (Y = OR' oder NR₂') und Protonen beider äquivalenter Ethylgruppen am Aluminium anzeigen (vgl. hierzu auch Fig. 2).

Auch die ¹³C-NMR-Daten (vgl. Tabelle 5) stützen die Strukturvorschläge für die Komplexe 7–12. So beobachtet man bei den Verbindungen 11 und 12 mit chelatbildendem $O(CH_2)_3Y$ -Ligand signifikante Änderungen der ¹³C-NMR-Verschiebungen von C(4), C(5) und C(6) gegenüber den $\delta(^{13}C)$ -Werten dieser Atome in den Dimeren 1 und 2, in denen die $O(CH_2)_3Y$ -Liganden beide Aluminiumatome nur über μ -O-Brücken miteinander verknüpfen. Weiterhin sind wie bei 3–6 die ¹J(C,H)-Kopplungskonstanten der C(5)-Atome bei der Komplexierung von Heteroatom Y an Aluminium erhöht. (Bezüglich einer Röntgenstrukturanalyse eines verwandten Komplexes mit starren Chelatliganden vgl. Ref. 13).

In den Komplexen 8-12 konnten chemische Austauschprozesse nachgewiesen werden. Aufgrund der Verwandschaft zwischen Kern-Overhauser-Effekt und Magnetisierungstransfer deutet sich der chemische Austausch in den Differenzspektren durch negative Signale an (vgl. Fig. 2). So konnte in 8-12 ein Austausch der im $[Et_2Al \leftarrow Y(CH_2)_m O]$ -Teil gebundenen Ethylgruppen mit den Ethylgruppen der AlEt₃-Einheit nachgewiesen werden. Das Intermediat F dieses Austauschprozesses gemäss Schema 1 hat eine gewisse Verwandtschaft zu den Hemialkoxyaluminium-Verbindungen [14-17].

Nach den Molmasse-Bestimmungen liegen die Verbindungen 8-9 praktisch nur monomer vor, während 10-12 und insbesondere 7 anteilig höher assoziiert sind. Über das in Schema 1 formulierte Intermediat G könnte bei Wanderung von R' und Al-O-Bindungsbruch die von Sato et al. [11] postulierte Form H und aus dieser dann das Dimere E entstehen.

Schlussfolgerungen

In $[R_2AIO(CH_2)_mY]$ -Struktureinheiten wird eine koordinative und elektronische Absättigung des Aluminiumatoms über Dimerisierung erreicht. Für m = 2 und Y = OR' und NR_2' erfolgt intramolekulare Chelatkomplexierung unter Ausbildung von fünfgliedrigen Aluminaringen mit fünffach-koordinierten Aluminiumatomen. In Gegenwart von $[AIR_3]_2$ bilden die $[R_2AIO(CH_{2m}Y]$ Struktureinheiten 1/1-Komplexe von Typ $[R_2AI \leftarrow Y(CH_2)_mOAIR_3]$. Der Angriff der Lewissäure erfolgt dabei am α -ständigen Lewis-basischen Zentrum O. In diesen Komplextypen werden sowohl fünf- als auch sechsgliedrige Aluminachelatringe (m = 2,3) ausgebildet. Unseres Wissens sind 11 und 12 die ersten Vertreter für Komplexe mit konformativ beweglichen sechsgliedrigen Alumina-Chelatringen.

Literatur

- 1 N. Davidson und H.C. Brown, J. Am. Chem. Soc., 64 (1942) 316.
- 2 E.G. Hoffmann, Liebigs. Ann. Chem., 629 (1960) 104.
- 3 H. Lehmkuhl und K. Ziegler in Houben-Weyl-Müller Methoden der Organischen Chemie Bd. XIII/4, G. Thieme, Verlag, Stuttgart, 1970, S. 80, 96.
- 4 T. Mole und E.A. Jeffery, Organoaluminium Compounds, Elsevier, Amsterdam, 1972.
- 5 W.R. Kroll und W. Naegele, J. Organomet. Chem., 19 (1969) 439.
- 6 R. Benn, A. Rufińska, H. Lehmkuhl, E. Janssen und C. Krüger, Angew. Chem., 95 (1983) 808. Angew. Chem. Int. Ed. Engl., 22 (1983) 779.
- 7 R. Benn, A. Rufińska, E. Janssen und H. Lehmkuhl, Organometallics, 5 (1986) 825.
- 8 R. Benn, E. Janssen, H. Lehmkuhl und A. Rufińska, J. Organomet. Chem., voranstehend, 333 (1987) 155.
- 9 M.R.P. van Vliet, P. Buysingh, G. van Koten, K. Vrieze, B. Koijić-Prodić und A.L. Spek, Organometallics, 4 (1985) 1701.
- 10 (a) R. Benn, A. Rufińska und G. Schroth, J. Organomet. Chem., 217 (1981) 91; (b) bzgl. einer Übersicht vgl. J.K. Sanders und J.D. Mersh, Prog. NMR. Spectroscop., 15 (1982) 353.
- 11 H. Sato, R. Tarao und H. Higashi, Bull. Chem. Soc. Jpn., 42 (1969) 2849.
- 12 Vorläufige Mitteilung, R. Benn und A. Rufińska, ²⁷Al-NMR-Spektroskopie, Kurzreferate 5. Diskussionstagung, GDCh-Fachgruppe Magnetische Resonanzspektroskopie, Kloster Walberberg, 4. 7. 10. 1983, R. Benn und A. Rufińska, Angew. Chem, Int. Ed. Engl., 25 (1986) 850.
- 13 Zur Kristallstruktur eines mit 10 verwandten Komplexes vgl. M.R.P. v. Vliet, G. v. Koten, M.A. Rotteveel, M. Schrap, K. Vrieze, B. Kojić-Prodić, A. Spek und A.J.M. Duisenberg, Organometallics, 5 (1986) 1389.

- 14 Vgl. Ref. 4, S. 219.
- 15 E.C. Ashby, J. Laemmle und G.E. Parris, J. Organomet. Cem., 19 (1969) P24.
- 16 E.A. Jeffery und T. Mole, Austr. J. Chem., 23 (1970) 715.
- 17 E.A. Jeffery, T. Mole und J.K. Saunders, Austr. J. Chem., 21 (1968) 649.